

Not Intended For New Designs

August 1992

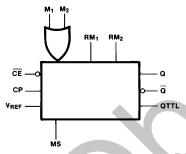
11C90/11C91 650 MHz Prescalers

Island Labs

General Description

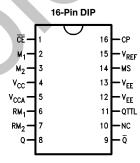
The 11C90 and 11C91 are high-speed prescalers designed specifically for communication and instrumentation applications. All discussions and examples in this data sheet are applicable to the 11C91 as well as the 11C90.

The 11C90 will divide by 10 or 11 and the 11C91 by 5 or 6, both over a frequency range from DC to typically 650 MHz. The division ratio is controlled by the Mode Control. The divide-by-10 or -11 capability allows the use of pulse swallowing techniques to control high-speed counting modulos by lower-speed circuits. The 11C90 may be used with either ECL or TTL power supplies.


In addition to the ECL outputs Q and \overline{Q} , the 11C90 contains an ECL-to-TTL converter and a TTL output. The TTL output operates from the same V_{CC} and V_{EE} levels as the counter, but a separate pin is used for the TTL circuit V_{EE} . This minimizes noise coupling when the TTL output switches and

also allows power consumption to be reduced by leaving the separate V_{EE} pin open if the TTL output is not used.

To facilitate capacitive coupling of the clock signal, a 400Ω resistor (V_{REF}) is connected internally to the V_{BB} reference. Connecting this resistor to the Clock Pulse input (CP) automatically centers the input about the switching threshold. Maximum frequency operation is achieved with a 50% duty cycle.


Each of the Mode Control inputs is connected to an internal 2 $k\Omega$ resistor with the other end uncommitted (RM $_1$ and RM $_2$). An M input can be driven from a TTL circuit operating from the same V $_{CC}$ by connecting the free end of the associated 2 $k\Omega$ resistor to V $_{CCA}$. When an M input is driven from the ECL circuit, the 2 $k\Omega$ resistor can be left open or, if required, can be connected to V $_{EE}$ to act as a pull-down resistor.

Logic Symbol

TL/F/9892-2

Connection Diagram

TL/F/9892-1

Pin Names	Description
CE	Count Enable Input (Active LOW)
CP	Clock Pulse Input
M _n	Count Modulus Control Input
MS	Asynchronous Master Set Input
Q, \overline{Q}	ECL Outputs
QTTL	TTL Output
RM _n	2 kΩ Resistor to M _n
V _{REF}	400Ω Resistor to V _{BB}

with compliments of Island Labs

Absolute Maximum Ratings

Above which the useful life may be impaired

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

-65°C to +150°C Storage Temperature Maximum Junction Temperature (T_J) +150°C Supply Voltage Range -7.0V to GND Input Voltage (DC) $V_{\mbox{\footnotesize{EE}}}$ to GND Output Current (DC Output HIGH) -50~mAOperating Range -5.7V to -4.7V

Lead Temperature (Soldering, 10 sec.) 300°C

Recommended Operating Conditions

Min	Тур	Max
0°C		+75°C
−55°C		+125°C
-5.7V	-5.2V	-4.7V
-5.7V	-5.2V	-4.7V
	0°C -55°C -5.7V	0°C -55°C -5.7V -5.2V

TTL Input/Output Operation

DC Electrical Characteristics

Over Operating Temperature and Voltage Range unless otherwise noted, Pins 12 and 13 = GND

Symbol	Parameter	Min	Typ (Note 3)	Max	Units	Conditions
V _{IH}	Input HIGH Voltage M ₁ and M ₂ Inputs		4.1		V	Guaranteed Input HIGH Threshold Voltage (Note 4), V _{CC} = V _{CCA} = 5.0V
V _{IL}	Input LOW Voltage M ₁ and M ₂ Inputs		3.3		V	Guaranteed Input LOW Threshold Voltage (Note 4), V _{CC} = V _{CCA} = 5.0V
V _{OH}	Output HIGH Voltage QTTL Output	2.3	3.3		V	$V_{CC} = V_{CCA} = Min,$ $I_{OH} = -640 \mu A$
V _{OL}	Output LOW Voltage QTTL Output		0.2	0.5	V	$V_{CC} = V_{CCA} = Min,$ $I_{OL} = 20.0 \text{ mA}$
I _{IL}	Input LOW Current M ₁ and M ₂ Inputs		-2.3	-5.0	mA	$V_{CC} = V_{CCA} = Max,$ $V_{IN} = 0.4V$, Pins 6, $7 = V_{CC}$
Isc	Output Short Circuit Current	-20	-35	-80	mA	$V_{CC} = V_{CCA} = Max,$ $V_{OUT} = 0.0V, Pin 14 = V_{CC}$

AC Electrical Characteristics $V_{CC} = V_{CCA} = 5.0 V$ Nominal, $V_{EE} = GND$, $T_A = +25 ^{\circ}C$

Symbol	Parameter	Min	Тур	Max	Units	Conditions
t _{PLH} t _{PHL}	Propagation Delay, (50% to 50%) CP to QTTL	6	10	14	ns	See Figure 1
t _{PLH}	Propagation Delay, (50% to 50%) MS to QTTL		12	17	ns	
t _s	Mode Control Setup Time	4	2		ns	
t _h	Mode Control Hold Time	0	-2		ns	
t _{TLH}	Output Rise Time (20% to 80%)		10		ns	
t _{THL}	Output Fall Time (80% to 20%)		2		ns	
f _{MAX}	Count Frequency	550 600	650 650		MHz	-55°C to +125°C 0°C to +75°C Clock Input AC Coupled 350 mV Peak-to-Peak Sinewave (Note 5)

ECL Operation—Commercial Version

DC Electrical Characteristics $V_{CC} = V_{CCA} = GND, V_{EE} = -5.2V$

Symbol	Parameter	Min	Тур	Max	Units	T _A	Conditions
V _{OH}	Output HIGH Voltage Q and Q	-1060 -1025 -980	-995 -960 -910	-905 -880 -805	mV	0°C + 25°C + 75°C	Load = 50Ω to $-2V$
V _{OL}	Output LOW Voltage \overline{Q} and $\overline{\overline{Q}}$	-1820	-1705	-1620	mV	0°C to +75°C	
V _{IH}	Input HIGH Voltage	-1135 -1095 -1035		−840 −810 −720	mV	0°C + 25°C + 75°C	Guaranteed Input HIGH Signal (Note 6)
V _{IL}	Input LOW Voltage	-1870 -1850 -1830		-1500 -1485 -1460	mV	0°C + 25°C + 75°C	Guaranteed Input LOW Signal
I _{IH}	Input HIGH Current CP Input (Note 1) MS Input M ₁ and M ₂ Input			400 400 250	μΑ	+ 25°C + 25°C + 25°C	$V_{IN} = V_{IHA}$
I _{IL}	Input LOW Current	0.5			μΑ	+25°C	$V_{IN} = V_{ILB}$
I _{EE}	Power Supply Current	-110 -119	-75		mA	0°C to + 75°C	Pins 6, 7, 13 not connected
V _{EE}	Operating Supply Voltage Range	-5.7	-5.2	-4.7	v	0°C to +75°C	
V _{REF}	Reference Voltage	-1550		-1150	mV	+25°C	$V_{RM_1} = V_{RM_2} = -5.2V$ $I_N = -10.0 \mu A$

AC Electrical Characteristics $T_{A}=0^{\circ}C$ to $+75^{\circ}C,\,V_{CC}=V_{CCA}=$ GND, $V_{EE}=-5.2V$

Symbol	Parameter	0°C		+25°C		+ 75°C	Units	Conditions
- Cyllibol	rarameter	Тур	Min	Тур	Max	х Тур	Omis	Conditions
t _{PLH}	Propagation Delay, (50% to 50%) CP to Q	1.8	1.3	2.0	3.0	2.5	ns	Output: $R_L = 50\Omega$ to $-2.0V$
t _{PLH}	Propagation Delay, (50% to 50%) MS to Q	3.7		4.0	6.0	4.5	ns	Input: $t_{ri} = t_{fi} = 2.0 \pm 0.1 \text{ ns}$
t _s	Setup Time, M to CP	2.0	4.0	2.0		2.0	ns	(20% to 80%)
t _h	Hold Time, M to CP	-2.0	0.0	-2.0		-2.0	ns	See Figure 1
t _{TLH}	Output Rise Time (20% to 80%)	1.0		1.0	2.0	1.0	ns	
t _{THL}	Output Fall Time (80% to 20%)	1.0		1.0	2.0	1.0	ns	
fMAX	Maximum Clock Frequency	650	600	650		625	MHz	AC Coupled Input 350 mV Peak-to-Peak. f _{MAX} is Guaranteed to be 575 MHz Min at 0°C to +75°C.

ECL Operation—Military Version

DC Electrical Characteristics

 $V_{CC} = V_{CCA} = GND, V_{EE} = -5.2V$

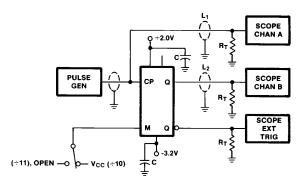
Symbol	Parameter	Min	Тур	Max	Units	TA	Conditions
V _{OH}	Output HIGH Voltage Q and $\overline{\mathbf{Q}}$	-1100 -980 -910	-1030 -910 -820	-900 -820 -670	mV	−55°C +25°C +125°C	Load = 100Ω to $-2V$
V _{OL}	Output LOW Voltage $\overline{\mathbf{Q}}$ and $\overline{\overline{\mathbf{Q}}}$	-1820	-1705	-1620	mV	−55°C to +125°C	
V _{IH}	Input HIGH Voltage	-1190 -1095 -975		-905 -810 -690	mV	−55°C +25°C +125°C	Guaranteed Input HIGH Signal (Note 6)
V _{IL}	Input LOW Voltage	-1890 -1850 -1800		-1525 -1485 -1435	mV	−55°C +25°C +125°C	Guaranteed Input LOW Signal
I _{IH}	Input HIGH Current CP Input (Note 1) MS Input M ₁ and M ₂ Input			400 400 250	μΑ	+ 25°C + 25°C + 25°C	$V_{IN} = V_{IHA}$
I _{IL}	Input LOW Current	0.5			μΑ	+25°C	$V_{IN} = V_{ILB}$
I _{EE}	Power Supply Current	-110	-75		mA	+ 25°C	Pins 6, 7, 13 not connected
			-119		mA	−55°C to +125°C	
V _{EE}	Operating Supply Voltage Range	-5.7	-5.2	-4.7	V	-55°C to +125°C	
V _{REF}	Reference Voltage	- 1550		-1150	mV	+ 25°C	$V_{RM_1} = V_{RM_2} = -5.2V$ $I_N = -10.0 \mu A$

AC Electrical Characteristics

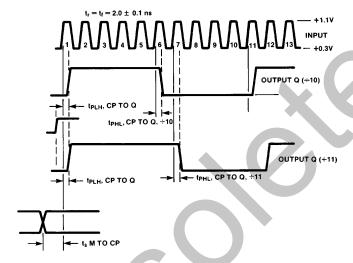
 $T_A = -55^{\circ}\text{C}$ to $+125^{\circ}\text{C}$, $V_{CC} = V_{CCA} = \text{GND}$, $V_{EE} = -5.2\text{V}$

Symbol	Parameter	−55°C		+ 25°C		+ 125°C	Units	Conditions
Cymbol	rarameter	Тур	Min	Тур	Max	Тур	Office	Conditions
t _{PLH} t _{PHL}	Propagation Delay, (50% to 50%) CP to Q	1.5	1.3	2.0	3.0	3.0	ns	Output: $R_L = 50\Omega$ to $-2.0V$
t _{PLH}	Propagation Delay, (50% to 50%) MS to Q	3.5		4.0	6.0	5.0	ns	Input: $t_{ri} = t_{fi} = 2.0 \pm 0.1 \text{ ns}$
t _s	Setup Time, M to CP	2.0	4.0	2.0		2.0	ns	(20% to 80%)
t _h	Hold Time, M to CP	-2.0	0.0	-2.0		-2.0	ns	See Figure 1
t _{TLH}	Output Rise Time (20% to 80%)	1.0		1.0	2.0	1.0	ns	
t _{THL}	Output Fall Time (80% to 20%)	1.0		1.0	2.0	1.0	ns	
f _{MAX}	Maximum Clock Frequency	700	600	650		600	MHz	AC Coupled Input 350 mV Peak-to-Peak. f _{MAX} is Guaranteed to be 550 MHz Min at -55°C to +125°C.

Note 1: Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.


Note 2: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Note 3: Typical limits are at $V_{\mbox{\footnotesize{CC}}}=\,5.0\mbox{\footnotesize{V}}$ and $T_{\mbox{\footnotesize{A}}}=\,+25\mbox{\footnotesize{^{\circ}}}\mbox{\footnotesize{C}}.$


Note 4: The M_1 and M_2 threshold specifications are normally referenced to the V_{CC} potential, as shown in the ECL operation tables. Using V_{EE} (GND) as the reference, as in normal TTL practice, effectively makes the threshold vary directly with V_{CC} . Threshold is typically 1.3V below V_{CC} (e.g., +3.7V at $V_{CC}=+5V$). A signal swing about threshold of $\pm 0.4V$ is adequate, which gives the state V_{IH} and V_{IL} values. The internal 2 k Ω resistors are intended to pull TTL outputs up to the required V_{IH} range, as discussed in the Functional Description and shown in Figure 5.

 $\textbf{Note 5:} \ \mathsf{TTL} \ \mathsf{Output} \ \mathsf{Signal} \ \mathsf{swing} \ \mathsf{is} \ \mathsf{guaranteed} \ \mathsf{at} \ \mathsf{f}_{\mathsf{MAX}} \ \mathsf{over} \ \mathsf{temperature} \ \mathsf{range}.$

Note 6: M_1 or M_2 can be tied to V_{CC} for fixed divide-by-ten operation.

TL/F/9892-3

TL/F/9892-4

Conditions:

 $\begin{array}{l} \text{Cortainties.} \\ \text{V}_{\text{CC}} = +2.0\text{V} \\ \text{V}_{\text{EE}} = -3.2\text{V} \\ \text{R}_{\text{T}} = 50\Omega \text{ (scope input impedance)} \\ \text{C}_{\text{L}} = \text{Jig and stray capacitance} < 5.0 \text{ pF} \\ \text{I}_{\text{I}} = \text{L}_{\text{Z}} = \text{equal } 50\Omega \text{ impedance lines} \\ \text{C} = 0.1 \text{ pF} \end{array}$

Note 7: Use high impedance to test QTTL.
Connect pin 13 to V_{EE}.

Note 8: For High frequency test use AC coupled input as in Figure 3.

Adjust input amplitude to 350 mV peak-to-peak.

FIGURE 1. AC Test Circuit

Functional Description

The 11C90 contains four ECL Flip-Flops, an ECL to TTL converter and a Schottky TTL output buffer with an active pull-up. Three of the Flip-Flops operate as a synchronous shift counter driving the fourth Flip-Flop operating as an asynchronous toggle. The internal feedback logic is such that the TTL output and the Q ECL output are HIGH for six clock periods and LOW for five clock periods. The Mode Control (M) inputs can modify the feedback to make the output HIGH for five clock periods and LOW for five clock periods, as indicated in the Count Sequence Table.

The feedback logic is such that the instant the output goes HIGH, the circuit is already committed as to whether the output period will be 10 or 11 clock periods long. This means that subsequent changes in an M input signal, including decoding spikes, will have no effect on the current output period. The only timing restriction for an M input signal is that it be in the desired state at least a setup time before the clock that follows the HHLL state shown in the table. The allowable propagation delay through external logic to an M input is maximized by designing it to use the positive transition of the 11C90 output as its active edge. This gives an allowable delay of ten clock periods, minus the CP to Q delay of the 11C90 and the M to CP setup time. If the external logic uses the negative output transition as its active edge, the allowable delay is reduced to five clock periods minus the previously mentioned delay and setup

Capacitively coupled triggering is simplified by the 400Ω resistor which connects pin 15 to the internal V_{BB} reference. By connecting this to the CP input, as shown in Figure 3, the clock is automatically centered about the input threshold. A clock duty cycle of 50% provides the fastest operation, since the Flip-Flops are Master-Slave types with offset clock thresholds between master and slave. This feature ensures that the circuit will operate with clock waveforms having very slow rise and fall times, and thus, there is no maximum frequency restriction. Recommended minimum and maximum clock amplitude as a function of a frequency and temperature are shown in the graph labeled Figure 2. When the CP or any other input is driven from another ECL circuit, normal ECL termination methods are recommended. One method is indicated in Figure 4. Other ECL termination methods are discussed in the F100K ECL Design Guide (Section 5 of Databook).

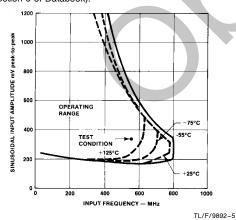


FIGURE 2. AC Coupled Triggering Characteristics

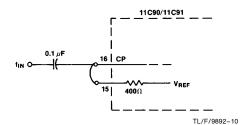
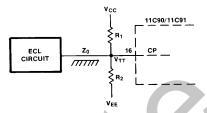
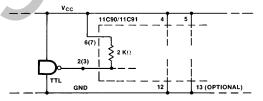



FIGURE 3. Capacitively Coupled Clocking


TL/F/9892-11

$Z_O\Omega$	50	75	100
$R_1\Omega$	80.6	121	162
$R_2\Omega$	130	196	261

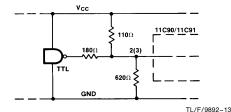
 $V_{EE} = -5.2V$, $V_{CC} = 0V$, $V_{TT} = -2.0V$

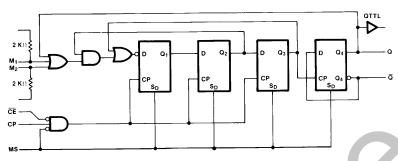
FIGURE 4. Clocking by ECL Source via Terminated Line

When an M input is to be driven from a TTL output operating from the same V_{CC} and ground (V_{EE}), the internal 2 $k\Omega$ resistor can be used to pull the TTL output up as shown in Figure 5. Some types of TTL outputs will only pull up to within two diode drops of V_{CC} , which is not high enough for 11C90 inputs. The resistor will pull the signal up through the threshold region, although this final rise may be somewhat slow, depending on wiring capacitance. A resistor network that gives faster rise and also lower impedance is shown in Figure 6.

TL/F/9892-12

FIGURE 5. Using Internal Pull-Up with TTL Source




FIGURE 6. Faster Low Impedance TTL to ECL Interface

Functional Description (Continued)

The ECL outputs have no pull-down resistors and can drive series or parallel terminated transmission lines. For short interconnections that do not require impedance matching, a 270Ω to 510Ω resistor to $V_{\mbox{\footnotesize EE}}$ can be used to establish the $V_{\mbox{\footnotesize OL}}$ level. Both $V_{\mbox{\footnotesize CC}}$ pins must always be used and should

be connected together as close to the package as possible. Pin 12 must always be connected to the $V_{\mbox{\footnotesize EE}}$ side of the supply, while pin 13 is required only if the TTL output is used. Low impedance $V_{\mbox{\footnotesize CC}}$ and $V_{\mbox{\footnotesize EE}}$ distribution and RF bypass capacitors are recommended to prevent crosstalk.

Logic Diagram 11C90

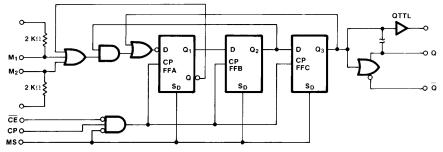
TL/F/9892-6

Note: This diagram is provided for understanding of logic operation only. It should not be used for evaluation of propagation delays as many internal functions are achieved more efficiently than shown.

Count Sequence Table 11C90

	Q ₁	Q ₂	Q ₃	Q ₄ (QTTL)
	н	Н	Н	H ∢ ————————————————————————————————————
÷10	├	Н	Н	Н
	L	L	Н	н
	L	L	L	н
	н	L	L	н
	Н	Н	L	Н
	L	Н	Н	L
	L	L	Н	L I
	L	L	L	L
	н	L	L	L
	L н	Н	L	L ————————————————————————————————————

Operating Mode Table 11C90


	Inputs							
MS	CE	M ₁	M ₂	Response				
Н	X	X	Х	Set HIGH				
L	Н	X	X	Hold				
	L	L	L	÷11				
L	L	Н	X	÷10				
L	L	Х	Н	÷10				

H = HIGH Voltage Level

L = LOW Voltage Level X = Don't Care

Note: A HIGH on MS forces all Qs HIGH.

Logic Diagram 11C91

TL/F/9892-8

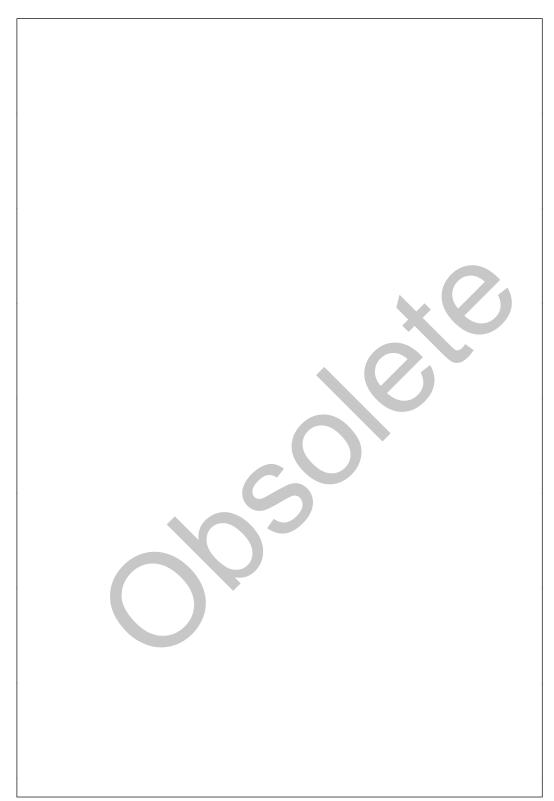
Count Sequence Table 11C91

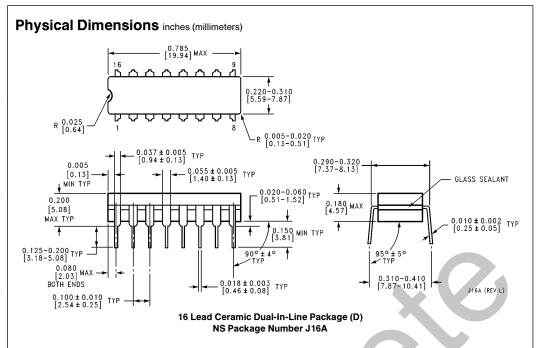
	Q ₁	Q ₂	Q ₃ (QTTL)
	Н	Н	H ← —; ÷6
÷5	→ L	Н	н
ĺ	L	L	н
	L	L	L
	Н	L	L
<u> </u>	— н	Н	

Operating Mode Table 11C91

Inputs				Output
MS	CE	M ₁	M ₂	Response
Н	Х	Х	X	Set HIGH
L	Н	Х	X	Hold
L	L	L	L	÷6
L	L	X	Н	÷5
L	L	Н	X	÷5

TL/F/9892-9


H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care


Note: A HIGH on MS forces all Qs HIGH.

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor

Europe Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege etevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor**

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	Applications
----------	--------------

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>