

QTC **Selective Call Tone Decoders**

15-Tone Selcall Decoder Group Call and Data Capability **Excellent Noise Performance 4 Bit Data Output Few External Components**

FX003

Publication D/003/4 February 1990

CCIR, ZVEI, EEA, EIA Tone Sets

μ Processor Compatible

High Dynamic Range

Low Power CMOS **On-Chip Oscillator Uses** Low-Cost Resonator

Island Labs

FX003QC FX003QZ FX003QE FX003QA **FX003QZS**

The FX003 is a CMOS QTC (Quadradecimal Tone Coding) tone decoder which may be used to decode Selcall tones in accordance with CCIR, ZVEI, EEA and EIA international tone standards.

The FX003 detects an input frequency falling within any of the fifteen tone channels programmed on-chip and outputs the hexadecimal tone number in 4-bit binary code. When a tone is detected, its 4-bit code is latched at the data outputs and a Data Change is generated. Failure to gualify any tone for a continuous period of 33 ms causes the output to be set to 'Notone' (16th logic state) and a Data Change strobe to be generated.

A DATA CHANGE output signals each change in the output code and can be used with the HOLD/ACKNOWLEDGE input to establish

handshake routines with microprocessors and other data processing logic.

A 'Power Up Reset' (PURS) routine ensures all internal circuitry is correctly reset when power is first applied to the device. Following 'PURS' the FX003 generates HEX 'E' (NO DATA CHANGE) which in turn is followed by a normal decode sequence.

The on-chip inverter may be used with a resonator to provide the 560 kHz master clock for the device, or an external clock may be used. A divided down buffered 23.33 kHz clock output is also provided for use with other '03 devices and trimming of the 560 kHz resonator.

The FX003 is available in a number of pin compatible versions, each version programmed in accordance with the frequencies and bandwidths of a specified **OTC** toneset.

Pin	Descrij (See Fig	otion ure 2)	Function				
D.I.L. FX003*	D.I.L. Chip Carrier K003* FX102K FX202*K (see Note A)		*QC, QZ, QE, QA, QZS				
1	2		23.333 kHz Clock O/P: A 23.333 kHz buffered squarewave logic output directly derived from the oscillator frequency (nominally 560.0 kHz). May be used for auxiliary functions e.g. 560 kHz resonator trimming, external timing of received tone periods and for other '03 family products.				
2	4	-	Xtal: Output from on-chip inverter.				
3	6	-	Xtal/Clock: Input to on-chip inverter may be used in conjunction with Xtal O/P and 560 kHz resonator or as a buffered input for an external clock (nominally 560.0 kHz).				
4	10	5	VSS: Negative supply.				
5	-	8	Hold I/P: Active when at VSS. If hold is taken to VSS when the input tone changes it latches the next data change pulse at logic 1 until the Hold is returned to VDD. This facilitates Interrupt/Handshake routines for micro-processors when used in conjunction with the Data Change O/P. Tie to VDD if not used.				
6	-	9	Power Up Reset: A logic 1 level of at least 1 ms duration is required at this pin to reset internal circuitry on power-up. For slow-rising power supplies increase the time constant of the components shown accordingly.				
7 & 16	1 3 5 7 8 9 11 12 14 15 16 18 20 21 22 23 25 27	1 2 3 6 7 10 11 13 14 15 18 20 23 24 26 28	Internally Connected/Open Circuit: Should be left open circuit.				
8	-	16	Data Change: A pulse is generated at this pin shortly after detection of a tone and new data being presented at the $Q_0 - Q_3$ outputs (see Figure 5 Timing Diagram).				
9 10 11 12	$\overline{\mathbf{x}}$	22	$ \begin{array}{c} \mathbf{Q}_{3} \\ \mathbf{Q}_{2} \\ \mathbf{Q}_{1} \\ \mathbf{Q}_{0} \end{array} \end{array} \\ \begin{array}{c} \mathbf{Data \ Outputs:} \ A \ 4-bit \ word \ which \\ \text{is output after a successful decode} \\ \text{and represents the Hex code for the} \\ \text{decoded tone frequency.} \end{array} $				
13	19	25	VDD: Positive Supply.				
14	24	<u> </u>	Signal Input : Audio selcall tones are a.c. coupled to this pin via a capacitor. D.C. bias of the internal high gain limiter is set up by connecting this pin via a resistor to the bias pin.				
15	26	_	Signal Bias: These pins should not be loaded with any other circuitry.				
	 13 17	3 27 	93.333 kHz Osc I/P 93.333 kHz Osc O/P. Logic Signal I/P. Logic Signal O/P Logic Signal O/P Signal O/P				

Note A:

FX102K and FX202*K are sold as a pair, and represent the same circuit function as the FX003* D.I.L. device.

EXTERNAL COMPONENT CONNECTIONS

Fig. 2 Dual-In-Line

* QC, QZ, QE, QA, QZS

No connection. Do not tie.

In recommended value for C, Z, E and ZS versions.
2.2n recommended value for the A version.

Fig. 4 560 kHz Resonator Circuit

Fig. 3 Chip Carrier

Character Tone Table

Tone Frequencies (fo) in Hz

003QA	003QC	003QE	003QZ	003QZS		Output	t Code		QTC
(EIA)	(CCIR)	(EEA)	(ZVEI)	(ZVEI-S)	Q³	Q2	۵,	٥	Format Character
600	1981	1981	2400	2400	0	0	0	0	0
741	1124	1124	1060	1060	0	0	0	1	1
882	1197	1197	1160	1160	0	0	1	0	2
1023	1275	1275	1270	1270	0	0	1	1	3
1164	1358	1358	1400	1400	0	1	0	Ó	4
1305	1446	1446	1530	1530	0	1	0	1	5
1446	1540	1540	1670	1670	0	1	1	Ó	6
1587	1640	1640	1830	1830	0	1	1	1	7
1728	1747	1747	2000	2000	1	0	0	0	8
1869	1860	1860	2200	2200	1	0	D	1	9
2151	2400	1055	2800	886	1	0	1	0	Ā
2433	930	930	810	810	1	0	1	1	В
2010	2247	2247	970	740	1	1	0	ò	c
2292	991	991	886	680	1	1	0	ĩ	D
459	2110	2110	2600	970	1	1	1	ò	E
NOTONE	NOTONE	NOTONE	NOTONE	NOTONE	1	1	1	1	F

Specification Absolute Maximum Ratings

Exceeding the maximum rating can result in device damage. Operation of the device outside the operating limits is not implied.

Supply voltage		-0.3V to 7.0V		
Input voltage at any pin (r	-0.3V to (VDD + 0.3V)			
Output sink/source currer	20mA			
Operating temperature rar	nge: FX003* FX102K/FX202K*	- 30°C to +85°C		
Storage temperature:	FX003*	- 55°C to 125°C		
Maximum device dissipati	on *QC, QZ, QE, QA, QZS	100mW		

Operating Limits

 $VDD = 5V, T_A = 25^{\circ}C, \phi = 560 \text{kHz}, \Delta f \phi = 0.$

All characteristics measured using the standard test circuit with the following test parameters, and is valid for all tones unless otherwise stated: --

Characteristic	See Note	Min	Тур	Max	Unit	
Static Characteristics						
Supply voltage (VSS = OV)			3.3	5.0	5.5	V
Supply current				500		μA
Logic '1' output I source $= 0$.	.1 mA	1	4.5			v
Logic '0' output I sink = 0.1 i	mA	1			0.5	V
Logic '1' input Level		2	3.5			V
Logic 'O' input level		2			1.5	V
Dynamic Characteristics						
Signal input range		3	0.1		VDD	Vok-ok
Decode Bandwidth (P≥0.995)	4			100	•pk pk
QA		4a	20			+Hz
QC		4b	1			±%
QE		4c	1			±%
OZ/O	ZS	4d	2			±%
Not-decode bandwidth (P≤ 0.	03)					
Q	А	5			60	+Hz
Q	с	5			3	±%
Q	E	5			3	±%
a	z/ozs	5			4.5	±%
Noise response rate (hours pe single character response	r F→ F̄→ F					
with no input tone).	QA	6		0.15		Hour
	QC	6		40.0		Hour
	QE	6		40.0		Hour
	OZ/OZS	6		1.0		Hour
Decode response time:						
Notone to tone $(F \rightarrow \overline{F})$		7	20	25	Tp	ms
Tone to notone, T_f ($\vec{F} \rightarrow F$)	7	33		53	ms
Min. intertone gap for 'F'		8	15		28	ms

5.

Notes

All conditions of input SNR and amplitude with maximum Tp specified for toneset. Gaussian input noise, bandwidth 6kHz, maximum

 \overline{F} = random single character.

 Relates to output pins 1, 8, 9-12.
Relates to input pins 5 and 6.
A.C. coupled, sine/squarewave.
With minimum tone period (Tp) specified for toneset. P = decode probability:
(a), (c) SNR 3 dB

Delay from change of input (tone applied/removed) to change at $Q_0 - Q_3$ outputs (see fig. 5). Included in T_2 . Minimum tone gap requirement for

input level corresponds to 1-digit code falsing rate.

(b), (d) SNR 0dB

Included in T_2 . Minimum tone gap requirement for 'notone' recognition. Outputs = F after delay. (see fig. 5).

NOT DRAWN TO SCALE

Fig. 5 FX003* Timing Diagram (See References)

* QC, QZ, QE, QA, QZS

Typical Performance

References:

- T_1 Logic 1, >2 ms
- T₂ > 33 ms & < 50 ms
- T₃ 33 ms (DATA E)
- T 20 ms minimum (Tp MAXIMUM)
- T₅ 0.5 ms 1.0 ms (DATA CHANGE)
- T₆ 1.0 ms (DATA CHANGE PULSE DURATION)
- T₇ > 50 μs T₈ < 120 μs
- $\dagger Q_0 Q_3$ will represent the input frequency present during and after PUR (shown as 'F' (Notone) in this example).
- tt After application of HOLD the next Data Change pulse will stay high until HOLD is removed according to timing shown.

The ceramic dual-in-line package of the FX003 is shown in *Figure 6* and the chip carrier version shown in *Figure 7*. For the D.I.L. package, the pins number counter-clockwise (top view) from 1 with reference to a notch as a guidance. For the chip carrier package, pins number counter-clockwise (viewed from above) from the long pad (pad 1).

Mandling Precentions.

The FX003 is a CMOS LSI circuit which includes input protection. However, precautions should be taken to prevent static discharges which can cause damage.

* QC, QZ, QE, QA, QZS

	* VERSIONS
	(QC : CCIR
16-pin Ceramic D I I	QZ : ZVEI
28-pad Ceramic Chin Carrier	QE : EEA
FX202*K 28-pad Ceramic Chip Carrier	QA : EIA
	QZS : Suppressed ZVEI
	16-pin Ceramic D.I.L. 28-pad Ceramic Chip Carrier 28-pad Ceramic Chip Carrier

Note: FX102K & FX202*K are available in pairs only.

CML does not assume any responsibility for the use of any circuitry described. No circuit patent licences are implied and CML reserves the right at any time without notice to change the said circuitry.